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LETTER TO THE EDITOR

Special relations for continuous and discrete Painlevé
equations
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Abstract. We investigate a relation between solutions of the Painlevé II equation corresponding
to values of the parameter of PII which cannot be connected through a Schlesinger transformation,
which was first derived by Gambier. Here we present the discrete analogue of this relation, relating
the discrete PII to the alternate d-PII. The latter turns out to be a consequence of a quadratic relation
existing between two different families of solutions of PV. A q-discrete analogue of the latter
relation is also presented.

What is amazing about Painlevé equations is not the extreme richness of their special properties
but rather the fact that new relations are regularly being discovered more than a century after
their derivation [1]. One possible reason for the renewed interest in the Painlevé equations is the
discovery of their discrete analogues a mere decade ago [2]. The term discrete Painlevé (d-P)
has been coined to indicate a non-autonomous, integrable mapping which, at the continuous
limit, goes over to a Painlevé equation. Soon after the d-P’s made their appearance it was
remarked that d-P’s appear in, essentially, two different forms, additive (i.e. as difference
equations) and multiplicative (i.e. as q-equations) [3]. In the former the independent variable
n enters linearly while in the latter it enters exponentially. Moreover, a large class of difference
d-P’s are just contiguity relations of the continous ones [4]. Thus some of the properties of
the (continuous) Painlevé equations are expected to have direct consequences on the discrete
case.

One of the remarkable properties of Painlevé equations is that while they introduce new
special functions, new ‘transcendents’, they also possess some solutions that can be expressed
in terms of elementary functions [5]. These solutions fall into two classes: solutions which
are rational in the independent variable, and solutions which are expressed in terms of the
classical special functions. Since the latter are the solutions of linear equations, this second
kind of solutions is referred to as the ‘linearizable’ case. These special solutions exist only for
very particular values of the parameters of the Painlevé equations. Moreover, the intersection
of the conditions for existence of both linearizable and rational solutions is sometimes empty.
Yet, for some Painlevé equations there exists a relation between the solutions corresponding to
values of the parameters associated with rational and with linearizable solutions. The simplest,
and best known, of these relations is the one for Painlevé II. It was first discovered by Gambier
[6] and has been recently rediscovered by several authors [7] (including those of the present
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paper). However, relations of this type do exist for other P’s as well and moreover, as we
shall show in what follows, these relations are not restricted to the continuous case but appear
equally well for d-P’s.

Let us start with the (continuous) Painlevé II equation and a brief recollection of its
properties. In what follows the prime (′) denotes a derivative with respect to the independent
variable, i.e. v′ = dv/dt . The PII equation which reads

v′′ = 2v3 + tv + µ (1)

with µ = −2α − 1
2 , has special solutions for µ integer (rational solutions) and µ half-

integer (linearizable case). Moreover, it is related to another equation of the Painlevé/Gambier
classification through the Miura transformation [8]:

2αw = v′ + v2 + t/2 (2a)

v = w′ + 1

2w
. (2b)

The equation for w, traditionally referred to as P34, is usually, as in Ince’s monograph [8],
presented in the form:

w′′ = (w′)2

2w
+ 4αw2 − tw − 1

2w
. (3)

What happens to P34 when α=0? Clearly from (3) we have the equation

w′′ = (w′)2

2w
− tw − 1

2w
(4)

This equation does not introduce a new transcendent. As a matter of fact equation (4), and
also the equation w′′ = (w′)2/2w − f (t)w − 1/2ω for arbitrary f (t), can be reduced to the
canonical form

w′′ = (w′)2

2w
− 1

2w
. (5)

This is just equation XXXII of the Painlevé/Gambier list. The latter has the solution
w = at2 + bt + c with the constraint b2 − 4ac = 1, while the equation with an arbitrary
f (t) is solved by w = A(t)B(t) with A, B two solutions of the equation X′′ = −fX/2, with
the constraint that their Wronskian A′B − B ′A be ±1.

However, it is clear from (2) that the Miura transformation becomes meaningless when
α = 0. In order to remedy this we rescale w, introducing W = αw, whereupon P34 becomes

W ′′ = (W ′)2

2W
+ 4W 2 − tW − α2

2W
(6)

and the Miura relating it to PII is

2W = v′ + v2 + t/2 (7a)

v = W ′ + α

2W
. (7b)

In the normalization of (6) and (7) it is straightforward to take the α = 0 limit. The equation
we obtain in this case is, up to a scaling, equation XX of the Painlevé/Gambier list. The method
of integrating the latter is through a quadratic transformation u2 = W which reduces it to a PII

with µ = 0, i.e.

u′′ = 2u3 − tu

2
. (8)

With these elements at hand it is straightforward to establish the relation found by Gambier.
We start from a PII with µ = − 1

2 , i.e. a value of the parameter corresponding to the linearizable
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case. Next, we perform the Miura, in the renormalised form, i.e. 2W = v′ + v2 + t/2. Since
µ = − 1

2 corresponds to α = 0 the resulting equation for W is not P34 but rather P20 and by
taking u2 = W we find for u a PII with µ = 0, equation (8). This value of the parameter
corresponds to the rational-solution case. Thus, with this chain of transformations we have
obtained a relation between solutions of PII equation (1) with µ = − 1

2 , to solutions of a PII

with µ = 0 in the slightly non-canonical form (8) given above. The Miura reads

2u2 = v′ + v2 + t/2 (9a)

v = u′

u
. (9b)

This is a remarkable property because the solutions for these two cases cannot be related
through the usual Schlesinger transformations which relate solutions with �µ = ±1. We
must point out here that, once the basic relation between solutions of the µ = 0 and µ = − 1

2
equations is obtained, Schlesinger transformations can be brought to play in order to relate
solutions between any integer µ and any half-integer µ. From the form of (9) it is clear that
while u determines completely v, if we give the latter we can determine u only up to a ± sign.
This is due to the fact that both ±u satisfy PII with µ = 0, equation (8).

Note that the latter fact has an interesting offshoot. Suppose we start from the solution
v of PII, equation (1), for some integer µ and apply successive Schlesinger transformations
in order to relate it to the solution at µ = 0. We then change the sign of the latter solution
and using the inverse Schlesinger transformations we construct another solution ṽ of PII for
the same integer µ. This constitutes a duality between the solutions of PII for any integer µ
(these being the values of the parameter where rational solutions exist). Note that the (unique)
rational solution for each value of µ is self-dual, since it goes over to the zero solution of PII

with µ = 0. By following the chain of transformations we have just described, it is possible
to relate explicitly the two solutions. Let us give the simplest non-trivial example, i.e. the case
µ = −1. We have

ṽ = −v − 2(2v2 + t)(2v′ + 2v2 + t)2 − 8v(2v′ + 2v2 + t) + 4

(2v′ + 2v2 + t)((2v′ + 2v2 + t)2(2v′ − 2v2 − t) + 8v(2v′ + 2v2 + t) − 4)
. (10)

Note that the rational solution v = 1/t is invariant.
One more remark is necessary here. As we explained above, we can, using (9), relate the

solution of PII in the ‘linearizable’ case to that of a PII in a ‘rational-solution’ case. However,
this relation only applies subject to some constraint to the linearizable and rational solutions
themselves. In the case µ = − 1

2 , we have a solution v = A′/A where A is a solution of the
Airy equation A′′ + tA/2 = 0. Substituting this expression for v into (9a) we find indeed that
u = 0. Conversely, if we start from u = 0 and try to use (9b) we only get the indeterminate
form 0/0. This does not mean that any solution v is acceptable but only those satisfying (9a),
namely the linearized solutions, involving one degree of freedom. Thus some special care is
needed in the handling of these special solutions.

Let us now turn to the discrete analogue of the relations we derived above. In this case,
we start from the discrete PII:

x + x = zx + µ

1 − x2
(11)

where x stands for x(n), x ≡ x(n + 1), x ≡ x(n− 1), and z ≡ z(n) = δn + β, with δ, β and µ

constants. We consider the case µ = 0. Multiplying both sides of (11) by x we can introduce
the variable X = x2 and the auxiliary variable Y = xx. Equation (11), with µ = 0, now reads

Y + Y = zX

1 − X
(12a)
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while we also have

XX = Y 2. (12b)

Solving (12a) for X and substituting into (12b) we obtain an equation for Y alone:(
Y + Y

Y + Y + z

) (
Y + Y

Y + Y + z

)
= Y 2. (13)

This equation was first identified in [9] as the Miura transformation of the equation we have
dubbed the alternate d-PII [10]. The relation between the variables X and Y and that of the
alternate-PII, u, is given by

Y = uX +
µ

2
= X

u
− µ

2
. (14)

In the case µ = 0, equation (14) simplifies to u2 = X/X, or

u = x

x
. (15a)

The second part of the Miura reads

X = x2 = 1 − zu

1 + uu
. (15b)

Eliminating between (15a) and (15b) we obtain for u the equation:

z

1 + uu
+

z

1 + uu
= 1

u
− u + z (16)

which is precisely alt-d-PII with the parameter (which normally appears on the RHS) set to
zero, i.e. the value for which alt-d-PII possesses linearizable solutions, in terms of the discrete
Airy function. Setting aside the auxiliary variables X, Y , we can interpret (15) as the relation
between the solutions of d-PII in the ‘rational solution’ subcase and that of alt-d-PII in the
‘linearizable’ subcase. Contrary to the continuum case, this special relation between solutions
of the discrete PII is a relation between two different discrete systems.

In close parallel with the continuous case, we must point out that (15) is valid for a generic
solution, and moreover while x fixes u completely, u fixes x only up to the sign. Again, (15)
cannot be applied without precaution to the linearized solution of (16) and the rational solutions
of (11). In the former case we have u satifying 1 + uu − zu = 0 and (15b) implies x = 0.
Conversely, if we start from the latter solution, (15a) reduces to the indeterminate form 0/0
just as in the continuous case.

As expected from what we said in the introduction, both discrete PII’s being of additive
type, they are contiguity relations of continuous Painlevé equations. Given this fact, one
would expect the special relation (15) obtained above to be the consequence of some analogous
relations which holds at the level of continuous Painlevé equations. It turns out that this is
indeed the case. In [9] we have presented the detailed list of quadratic relations for Painlevé
equations and, among others, we have identified a quadratic relation between solutions of PV:

w′′ = (w′)2

(
1

2w
+

1

w − 1

)
− w′

t
+
(w − 1)2

t2

(
αw +

β

w

)
+ γ

w

t
+
δw(w + 1)

w − 1
. (17)

The solution w(t) corresponding to α = −β, γ = 0 and δ �= 0, which we can scale to δ = −2
without loss of generality, is related to the solution v(s) corresponding to δ̃ = 0, γ̃ = 1, α̃ = 0,
β̃ = −4α. The precise relation is v = 4w/(1 + w)2, with s = t2/2. (Note that 1 − v is a
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perfect square 1 − v = x−2 with x = (1 + w)/(1 − w)). Now from the theory of the Painlevé
equations it is known that a PV with δ = 0 is just a Miura transformation of PIII [12]:

u′′ = (u′)2

u
− u′

t
+ u3 +

1

t
(au2 + b) − 1

u
. (18)

The relation reads

du

dt
+

v + 1

v − 1
u2 + 1 − b + 1

t
u = 0 (19a)

u = − s

v

dv

ds
+
a + b + 2

4
v − a

2
+
a − b − 2

4v
(19b)

where v, considered as a function of s, with s = t2/2, satisfies a PV with parameters related
to that of PIII through α̃ = (a + b + 2)2/32, β̃ = −(a − b − 2)2/32, γ̃ = 1, δ̃ = 0.

In the particular case at hand we have γ̃ = 1, δ̃ = 0, but also α̃ = 0, β̃ = −4α where α

is the parameter of the original PV (17). In this case (19) is simplified to

du

dt
+

v + 1

v − 1
u2 + 1 +

a + 1

t
u = 0 (20a)

tu = − t

2v

dv

dt
− a

2
+

a

2v
(20b)

where v is expressed in terms of w(t) through v = 4w/(1+w)2. The normalization chosen for
this Miura corresponds to δ = −2 for the PV equation (17) satisfied by w(t), and u(t) satisfies
the PIII equation (18) with a = √

32α, b = −a − 2.
Note that the latter relation is just such that (18) has linearizable solutions. Indeed, if u

satisfies the Riccati

du

dt
+ u2 + 1 +

a + 1

t
u = 0 (21)

it is a solution of (18) with b = −a−2. This corresponds to an infinite value of v, i.e. w = −1.
Thus all the linearizable solutions of PIII are related to the elementary solution w = −1 of the
PV (17), the conditions α = −β and γ = 0 being just the requirement for this solution to exist.

The relation of the discrete PII’s (11) and (16) to the continuous PV and PIII allow us to
understand their special Miura (15) as a consequence of the Miura (20) above. Indeed, the
variable x of d-PII is just the one related to the solution w of PV through x = (1 +w)/(1 −w),
while the variable u of alt-d-PII is precisely that of PIII. In particular, the elementary solution
w = −1 of PV corresponds to the elementary solution x = 0 of the d-PII (11) for µ = 0. As in
all the previous cases, the relationship we have established between PV and PIII is one which is
valid between generic solutions, and not just for linearized solutions of PIII and the elementary
solution of PV.

A final remark is in order here. The relation between PIII/PV and d-PII/alt-d-PII allows
one to view the Miura (15) from a different angle. If we start from the u solution of (18) with
b = −a − 2 and obtain v from (19a), we can compute x through the relation x2 = (1 − v)−1.
This quantity is precisely the one that enters (15b). From the contiguity relation between
PIII/alt-d-PII we have z = −a/t . Using this value we can obtain u from (15b) and verify that
it satisfies (18) for a → a + 2 (and b = −a − 4). Thus (15b), with the proper z, is just the
Schlesinger transformation of PIII.

Having seen that these special relations between discrete Painlevé equations are the
consequences of relations between continuous equations, we can ask whether there exist
genuinely discrete analogues without reference to continuous systems whatsoever. In order
to find such a relation, we turn to those purely discrete objects, the q-P’s. In [13] we have
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identified the q-discrete form of PIII:

vv = µζw + ζ 2

w(w − 1)
(22a)

ww = νζ̃w + ζ̃ 2

v(v − 1)
(22b)

where ζ = ζ0λ
n, ζ̃ = ζ

√
λ, and µ, ν and λ are constants. There exists a Miura transformation,

from this q-PIII to some other q-equation, of the form

X = w(v + µζ − vw)

Aµζ
(23a)

Y = vw − µζ

Pv
(23b)

with A2 = ν
√
λ/µ, P 2 = µν/

√
λ. The variables X and Y satisfy

YY = (X − A)(X − 1/A)

1 − ZX
(24a)

XX = (Y − P)(Y − 1/P ) (24b)

with Z = −Aµ/ζ . This system has a PV with δ = 0 as its continuous limit, which is obtained
through λ = 1 + ε, Z = ε2t , Y = 1 − (X + εtX′/2) + O(ε2), A = 1 + εa, P = 1 + εp. At
the limit ε → 0 we find a non-canonical form of PV for X. The homographic transformation
W = X/(X − 1) leads to a canonical equation PV for W of the form (17) with α = 2a2,
β = −2p2, γ = −2 and δ = 0.

In the particular case µν = √
λ, i.e. P = ±1 (which can be taken as 1 without loss of

generality), there exists for (22) a linearizable solution satisfying the discrete Riccati equations:
v(w − 1) = µζ , w(v − 1) = νζ̃ , corresponding to X = 0, Y = 1. For this value of P , we
can find a quadratic relation between (24) and another q-PV. Putting Y = 1 − xx, X = x2,
equation (24b) is automatically satisfied and (24a) becomes a subcase, identified in [11], of
the standard q-PV [3]:

(xx − 1)(xx − 1) = (x − b)(x − 1/b)(x − c)(x − 1/c)

(1 − zxd)(1 − zx/d)
. (25)

The subcase at hand (where we define z = √−Z) is characterized by the constraints
b = −c(= √

A) and d = i, which are just the requirement for the existence of the elementary
rational solution x = 0. (Note that, formally, x = 0 is always a solution of (24) whatever the
values of its parameters. However, if we expand both sides and subtract 1, we note that an
overall factor of x drops out and x = 0 is a solution of the resulting equation only when the
above constraints are satisfied.) So

x2 = w(v + µζ − vw)

b2µζ
(26a)

xx = 1 − w +
µζ

v
(26b)

is the q-analogue of the relation (20) between a PIII, namely (22), in the linearizable case
µν = 1/

√
λ , and a PV, namely (25), in the rational-solution case c = −b, d = i. The relation

between the single remaining coefficient in each of (22) and (25) is b2 = ν while z2 = 1/ζ̃ .
In this Letter we have explored a new type of special Miura/auto-Bäcklund relations

which exist between Painlevé equations. These transformations relate solutions of Painlevé
equations for values of the parameters which could not be related through the usual Schlesinger
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transformations. We have presented these special relations in the case of continuous P’s. For
discrete P’s we have shown that these special relations are rather Miura’s, relating two different
discrete P’s. Finally, as an offshoot of this work we were able to show that it is possible to
exhibit a duality among the solutions of PII for the same integer value of the parameter (the
rational solution itself being self-dual).
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